Institute of Health Systems

     

Water Quality Testing Services
Water Quality Testing Services Catalogue
Download Forms
Water Sample Collection Record "IHS Form - WCR1"
Test Requisition "IHS Form - TRL1"
Test Requisition Letter "TRL1 " & Water Sample Collection "WRC1"
Publications
Library
Archive
Home

 
IHS Mission & Goals:
Groom Skills,
Gather Evidence and
Generate Knowledge for people's health.

To Improve the Efficacy,
Quality & Equity
of Health Systems.

 

      

 Water Quality Monitoring Services for Municipal Utilities.

     


The water quality monitoring program at IHS has developed in partnership with the Hyderabad Metro Water Supply and Sewerage Board (HMWSSB/MWB). This public-private partnership started in 2005, soon after establishment of the IHS Laboratory, and in the context of a jaundice outbreak in the old city area of Hyderabad . A few slum areas were assigned by the MWB for monitoring of water quality by the IHS. IHS water quality investigators (WQIs) tested for residual chlorine in all public standposts and pit taps in households. In addition, a random sample of house taps were covered. Samples for bacteriological and physicochemical analysis are collected from a smaller number taps tested for residual chlorine. Subsequently samples of stored water in households and drinking water from street vendors were included for a more comprehensive understanding of consumer exposure to drinking water quality.

Residual chlorine (RC) is tested using N,N-diethyl phenylene diamine (DPD) with calibrated color comparator, as recommended by the World Health Organisation (WHO). Previous methods involved the use of Orthotolidine and starch-potassium iodide. OT is now known to cause cancer and so is not recommended . Water quality investigators are trained to test for residual chlorine using DPD tablets and a laminated color comparator. The chemical unit of IHS Laboratory (aka ChemLab to IHS personnel) periodically conducts induction training in field testing of residual chlorine (FTRC) for new recruits, proficiency tests and refresher training at regular intervals for continuing staff. WQIs are provided with a specially designed bag to carry residual chlorine test kit, sampling-bottles, ice packs etc. Separate sampling bottles with unique identification (BottleId) labels are provided for physicochemical and bacteriological monitoring . Every WQI carries a smartphone with a mobile app to capture FTRC test data. The FTRC mobile app has been developed by the IHS on the Epi Info platform . A dedicated water quality monitoring chat group (WQM-chat-group) has been created on a social media group chat app for real time communication between WQIs, IHS water safety project coordinators (IHS-coordinators) and water utility quality assurance and testing (QAT) officers.

WQIs visit service reservoirs and residential neighbourhoods (identified slums) in their respective zone, for FTRC and collection samples for laboratory tests. Their working hours are synchronized with water supply timings in respective areas, to ensure testing of live municipal supply. Typically, WQIs start their day early. On any particular day a WQI would visit several service reservoirs and slum areas, and rotate daily visits to cover most of the services reservoirs and slum areas in the assigned zone. WQIs their first test result in the chat group to indicate their attendance. In the event of a no-residual-chlorine (No-RC) test result, post a message in the WQM-chat-group and sometimes may upload photos of test result/location etc. This enables QAT officers to initiate real time response through concerned operations personnel. At times, when there is any confusing or implausible posting in the WQM-chat-group, IHS-coordinators and QAT officers confer over telephone to resolve discrepancies, and establish factual position to facilitate appropriate action. In the event of a no-RC result at a service reservoir, WQIs inquire with operations personnel to ascertain reasons and report the same using a set of structured ‘RCNote’ and a free flowing ‘RCRemarks’ field in their mobile app. The structure ‘RCNote’ can be grouped into (a) Machine malfunction, (b) Operator error or no operator, (c) No chlorine gas, (d) No power, (e) Low level or no distribution etc. The WQI may record additional information in ‘RCRemarks’ to reconfirm or further explain the No-RC event. For example; when booster chlorination could not be done as there was no chlorine gas, the WQI would select ‘No chlorine gas’ in the ‘RCNote’ field and enter information about availability of spare cylinder in the ‘RCRemarks’ field. In case, a sample is collected for laboratory analysis the identification number captured in the mobile app for reference. WQIs collect samples for physicochemical testing and bacteriological analysis in accordance with a sampling plan, which allocates samples to various sources, namely; service reservoirs, water tankers, public standposts, pit taps, house taps, stored water etc. WQIs end their work shift by visiting the IHS Laboratory to deliver samples for laboratory testing and to synchronize FTRC data from mobile app with data processing unit. Occasionally, when there is no sample to deliver for lab testing, a WQI may send FTRC synchronization file by email, and retire for the day.

The ChemLab and microbiology unit of IHS Laboratory (aka BioLab to IHS personnel) process samples received from the field. The physicochemical monitoring (PCM) monitoring test package includes a core set of parameters to assess quality of municipal water. These include, (a) physical and sensory characteristics such as colour, odour, turbidity, total dissolved solids (TDS) and pH, and (b) chemical parameters such as alkalinity, hardness, ammonia, nitrites, nitrates, and chlorides. Colour, odour, turbidity and TDS indicate aesthetic quality of municipal supply. pH and alkalinity are operational parameters for safe passage in distribution system. Ammonia, nitrite, nitrates and chlorides would indicate intrusion of sewage or organic leachates into the distribution system. Hardness, would indicate domestic usability and implications for maintenance of household appliances. In addition, fluorides are included in the PCM test-package for Hyderabad Metro Water, because fluorosis is a regional concern.

Bacteriological contamination monitoring (BCM) test-package for municipal water includes estimation of most probably number of total coliforms [MPN(TC)/MPN], thermotolerant coliforms (TTC), and E. coli. Most total coliform bacteria (excluding Thermotolerant coliforms & E. coli) are normal inhabitants of soil and water environments. Total coliforms can also survive and grow in water distribution systems, particularly in the presence of biofilms. Hence, Total coliforms are useful as an indicator to assess the treatment effectiveness, cleanliness and integrity of distribution systems and the potential presence of biofilms. Plenty of total coliforms in distribution systems, despite booster chlorination, may be due to biofilms, inadequate booster chlorination, and/or excessive ambience temperature. Hence, QAT officers are advised to investigate locations showing plenty of total coliforms, to rule out operational deficiencies, if any.

Thermotolerant coliforms, other than E. coli may originate from organically enriched water such as industrial effluents or from decaying plant materials and soils, as well as animal and human faeces. In temperate climate, surface water concentrations of thermotolerant coliforms are directly related to E. coli concentrations. But in tropical and subtropical surface waters, such as in Hyderabad, thermotolerant coliform bacteria may occur without any obvious relation to human faecal pollution. Hence TTC alone do not indicate faecal contamination. However, presence of TTC in treated water should not be ignored, as the basic assumptions that pathogens may be present, and that treatment has been inadequate still holds good. Hence, QAT officers are advised to view TTC as an operational indicator of system integrity. Presence of E. coli is a definitive indicator of faecal contamination.

These core set of parameters mentioned above have been chosen for cost-effective and sustainable routine monitoring of municipal water quality. These parameters would not detect contamination with industrial effluents, heavy metal or pesticide intrusion etc. Special tests will have to be done when and where such contamination is suspected. Both units of the laboratory share test results in a spreadsheet to the data processing unit and IHS coordinators on the same day when results are available.

The data processing officer(s) gather FTRC data files from all WQIs, laboratory test results from BioLab and ChemLab and prepare a daily report to the Water Utility’s QAT officer concerned. The daily report provides a summary of BCM activities, identifies BCM test results that may be of some concern, BCM sample-wise statement, a summary of FTRC activities, statement of No-RC cases, and statement of PCM test results. A structured algorithm is followed to report about quality of water based on BCM test results, indicating cases of operational concern and unsatisfactory test results if any.

QAT officers inform operations personnel about cases of concern and unsatisfactory BCM test results are, so as to identify contamination vulnerabilities and for appropriate remedial action. Strict adherence to booster chlorination protocol often resolves many contamination concerns. Sometimes SR cleaning, protection & proper maintenance would help. Occasionally, repair or replacement of distribution lines may be required. The net result of all such interventions would be clearance of bacteriological contamination in follow-up samples.

In addition, IHS coordinators watch for BCM test results to focus on cases indicating faecal contamination and inquire about concerned sampling points. WQIs revisit the concerned household or service reservoir as the case may to gather circumstantial evidence and contextual information that may provide some clue regarding source of contamination. For example; WQIs would ask the concerned household and in the neighbourhood, if they have noticed any discoloration, foul smell, or turbidity in municipal supply, if they have experienced sewerage overflows in the area or if there is any recent damage or repair to water pipeline in the neighbourhood etc. A brief summary of the follow-up inquiry is incorporated in the ‘BCMRemarks’ column of the concerned daily report. The revised daily report is forwarded to QAT officers drawing their attention to specific changes in the revised daily report. The PCM test results are watched by IHS coordinators looking for signs of sewage contamination if any. For example, very high TDS, coupled with high levels of chlorides, presence of ammonia and nitrites would indicate some intrusion. In our experience such deviations in chemical profile are very rare. None the less, IHS coordinators actively watch for such events, so that follow-up samples can be tested to reconfirm altered chemical profile and sources of contamination, if any, can be investigate. The data processing unit consolidates the daily report once in a week and at the end of every month. The weekly and monthly reports are forwarded to water utility QAT department for managerial review and future planning purposes.

The annual report of water quality monitoring activities summarises FTRC, PCM and BCM data for the year, analyses trends with respect to previous year, documents insights gained from WQM activities during the year, identifies areas of concern, and suggests operational improvements for consideration of senior management. This report also provides descriptive summary statistics of physicochemical profile and microbial purity of water supplied to consumers in monitored areas, during the year.

 [Back]

   

AP State ProfilePublic Health DatabaseIHS Resource |   Careers  Contact us |